

Microgrid Insight Made Simple

Strengthening the Skilled Workforce in the Renewable Energy Sector

Somali Renewable Energy Forum

Developed & Presented by Shuraako Hargeisa, February 21, 2016

Dr. Peter Lilienthal

1790 30th St, Suite 100, Boulder, Colorado 80301, USA http://www.homerenergy.com ● +1-720-565-4046

Why Training?

Projects are cost-effective with local labor

HOMER®

HOMER Pro is the global standard for least cost design of clean, reliable, distributed power.

- National Renewable Energy Lab: 1992-2009
- Original developers now at HOMER Energy
- 140,000+ users in 193 countries

Microgrid Decisions Made with Confidence

Training

Consulting

Market Access

1 year of HOMER Projects

Training for Whom?

- Energy Planners
- Utility Executives
- Power Engineers
- Funding Organizations
- Technicians
- Customers / General public

HOMER bridges different worlds

Renewable Advocates

Diesel Mechanics

HOMER as a communication tool

Questions HOMER Can Answer

- Which technologies?
 - Is wind worth the trouble?
 - Lead-acid or lithium or … ?
- New diesels or retrofit existing ones?
- How much fuel will it save?
- How long will the batteries last?
- Can we turn off some of the diesels?
- What is the return on investment?
- What if the load grows?

Optimal System Type

Optimization Results

E	Export			Optimization Results: Left Double Click on a particular system to see its detailed Simulation Results															Catego	Categorized Overall					
				Architecture								Cost				System	Dsl			PV	G10	G10 S6CS25P			
<u> </u>	,			<u> </u>	=	~	PV (kW) ∇	G10 🍸	Dsl (kW)	S6C S25P	Conv erter (kW)	COE (\$)	NPC (\$)	Operating cost (\$)	Initial capital ∇	Excess Elec (kWh/ yr)	Hours ∇	Production 7	Fuel (L)	O&M ₹	Production 7	Production 7	Annual Throughput	Lifetime 🏹	
	,	╁		î	<u>=</u>	Z	2.00	1	15.0	12	7.00	\$0.411	\$211,555	\$9,327	\$80,100	6389.332	2,496	21,689	6,545	468	3,235	23,593	10,820	11	
	,			Î	=+	<u>Z</u>	5.00		15.0	12	7.00	\$0.412	\$212,030	\$11,511	\$49,800	115.3029	3,305	34,518	10,117	620	8,087		10,914	11	
		╁		Ê	=	<u>Z</u>		1	15.0	12	7.00	\$0.414	\$212,845	\$10,114	\$70,300	5254.031	2,726	24,018	7,231	511		23,593	11,471	10	
				Ê	=	<u>Z</u>			15.0	4	2.00	\$0.428	\$220,252	\$14,762	\$12,200	940.7152	6,360	39,359	12,702	1,192			3,762	10	
				Î					15.0			\$0.516	\$265,367	\$18,403	\$6,000	10789.63	8,760	47,290	15,765	1,642					

Return on investment (%)	12.2
Internal rate of return (%)	12.0
Simple payback (yr)	6.81

Simulation Results

Electrical Production

Battery Management

Operational Analysis

When is backup power needed?

Conclusions

- Projects are cost-effective with local labor
- Renewables can fully electrify Africa
 - Affordable and sustainable
- These systems are different from traditional choices
- Many choices
- Hybrid systems for high quality power