## Commercial Viability Key to Rural Energy Program Sustainability



Randall Nottingham
ESRES RTL Team Leader
Hargeisa, Somaliland
21 February 2016



### Why Hybrid Mini-Grids Fail

| Challenge                                     | Solution                                                                                                                                                                                                                                                  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lack of Load Planning/Forecasting             | <ul> <li>Develop and implement training in basic load analysis and planning</li> <li>Conduct load design, planning, and forecasting exercise</li> <li>Communicate lessons learned with stakeholders</li> </ul>                                            |
| Inappropriate Generation<br>Technology        | <ul> <li>Gather information on available technology options</li> <li>Identify criteria for technology selection</li> <li>Present case studies and best practice</li> </ul>                                                                                |
| Inadequate Grid                               | <ul> <li>Field survey</li> <li>Load planning and forecasting</li> <li>Evaluation of distribution policy and ownership options</li> </ul>                                                                                                                  |
| Lack of Maintenance<br>Budget and Spare Parts | <ul> <li>Evaluate operations and develop maintenance budget</li> <li>Create proper maintenance schedule and calculate costs</li> <li>Incorporate O&amp;M costs into appropriate tariff structure and collection mechanism</li> </ul>                      |
| Metering/Billing<br>Implementation            | <ul> <li>Evaluate local conditions and propose appropriate metering and payment plan</li> <li>Community outreach campaign on importance of metering and billing for sustaining system</li> <li>Develop case study of successful implementation</li> </ul> |

### Why Hybrid Mini-Grids Fail (2)

| Challenge                                         | Solution                                                                                                                                                                                                                                          |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Poor Community Outreach/Engagement                | <ul> <li>Identify key stakeholders</li> <li>Establish issues and concerns</li> <li>Develop outreach materials and community engagement plan</li> <li>Organize and host stakeholder events</li> </ul>                                              |
| Wrong Ownership/Governance Model                  | <ul> <li>Evaluate existing arrangement</li> <li>Recommend options for strengthening existing system or implementing new model</li> </ul>                                                                                                          |
| Lack of O&M capacity                              | <ul> <li>Capacity assessment of operators</li> <li>Identify existing training resources</li> <li>Develop O&amp;M training materials and deliver training (if necessary)</li> </ul>                                                                |
| Inappropriate Revenue<br>Model/Poor Tariff Design | <ul> <li>Document existing revenue model</li> <li>Propose alternative models/tariff structures and assess impact on stakeholders</li> <li>Communicate importance of appropriate tariff for system sustainability</li> </ul>                       |
| Economic Viability                                | <ul> <li>Calculate cost of sustainable O&amp;M and investment</li> <li>Identify and promote viable end-user model</li> <li>Propose appropriate revenue model/tariff structure</li> <li>Develop case study of successful implementation</li> </ul> |
| Failure to Gain Key<br>Stakeholder Support        | <ul> <li>Identify potentially hidden stakeholders</li> <li>Determine motivations, interests, and agendas</li> <li>Proactively engage stakeholders in planning and process</li> </ul>                                                              |

#### Commercial Viability Key to Sustainability



# Designing Mini-Grids for Commercial Viability and Sustainability

- Appropriately designed system: Understand and manage costs of capital, installation, operation, and maintenance.
- Tariff structure suitable for market and sufficient to recover costs and provide reasonable rate of return.
- User mix has willingness and ability to pay for electricity.
- Metering and collections capable of capturing revenue.
- Operator and community committed to sustainability of system.

## What Can You Do with 100 kW Generator?



<sup>\*</sup>Assuming people want to use at same time.

#### What Does Household Load Look Like?



# The New System Should Increase the Power Available per Household



100 kW Generator



100 kW Generator



50 kW Renewables



500 Households



200 W per Household



600 Households



Households



250 W per Household



150 W per Household

### Several Proposed Projects Would Reduce Power per Connection

Summary of Proposed Capacity and Connection Additions from Concept Notes Received for ESRES Phase I

|       |          | ı                       |          | Curren      | •              | Planned Additions |             |                | Total    |             |                | Change         |
|-------|----------|-------------------------|----------|-------------|----------------|-------------------|-------------|----------------|----------|-------------|----------------|----------------|
|       |          |                         | Capacity |             | Power/         | Capacity          |             | Power/         | Capacity |             | Power/         | Power/         |
| No.   | Province | Bidder                  | (kW)     | Connections | Connection (W) | (kW)              | Connections | Connection (W) | (kW)     | Connections | Connection (W) | Connection (W) |
| 1     | Sanaag   | Badhan Electricity Co.  | 60       | 2,000       | 30             | 250               | 1,000       | 250            | 310      | 3,000       | 103            | 73             |
| 7     | Sanaag   | EEPCO                   | 1,500    | 5,000       | 300            | 300               | 2,000       | 150            | 1,800    | 7,000       | 257            | (43)           |
| 21    | Awdal    | Aloog Electricity Co.   | 1,240    | 11,250      | 110            | 700               | 700         | 1,000          | 1,940    | 11,950      | 162            | 52             |
| 3     | Awdal    | Horn Renewable Energy   | 40       | 150         | 267            | 93                | 200         | 465            | 133      | 350         | 380            | 113            |
| 10    | Togdheer | Telesom Electricity Co. | 360      | 1,800       | 200            | 140               | 100         | 1,400          | 500      | 1,900       | 263            | 63             |
| 8     | Togdheer | HECO                    | 3,700    | 23,751      | 156            | 500               | 3,500       | 143            | 4,200    | 27,251      | 154            | (2)            |
| 2     | Saaxil   | Beder Electricity Co.   | 480      | 900         | 533            | 100               | 1,600       | 63             | 580      | 2,500       | 232            | (301)          |
| 11    | Saaxil   | Home Star Power         | 238      | 500         | 476            | 100               | =           | NA             | 338      | 500         | 676            | 200            |
| 6     | Hargeisa | Alel Electric Co.       | 440      | 2,200       | 200            | 300               | 1,500       | 200            | 740      | 3,700       | 200            | =              |
| 16    | Hargeisa | KAAH                    | 1,280    | 400         | 3,200          | 1,000             | -           | NA             | 2,280    | 400         | 5,700          | 2,500          |
| 4     | Sool     | LESCO                   | 480      | 2,000       | 240            | 250               | -           | NA             | 730      | 2,000       | 365            | 125            |
| 20    | Sool     | Taleh Electricity Co.   | 56       | 300         | 187            | 60                | 500         | 120            | 116      | 800         | 145            | (42)           |
|       |          |                         |          |             |                | ·                 |             |                |          |             |                |                |
| Total | =        |                         | 9,874    | 50,251      |                | 3,793             | 11,100      |                | 13,667   | 61,351      |                |                |

Note: Some of the concept notes were unclear, so it is possible that some of the information here is in error and based on a misunderstanding.

Depending on the goals of the project, perhaps this should be basis for rejection.

# What Does it Take to Power Economic Development?

| Item                         | Power (W)                                  | Business/Benefit                                                                                                 |
|------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| CFL Light Bulbs              | 50                                         | <ul> <li>Extend shop hours</li> <li>Restaurant/café</li> <li>Night classes/studying</li> <li>Security</li> </ul> |
| Sewing Machine               | 100                                        | Dress-maker/tailor                                                                                               |
| TV & Satellite Dish          | 250                                        | Restaurant/café                                                                                                  |
| Computer (2-3) & Printer (1) | 250-500                                    | <ul><li>Education</li><li>Internet access</li><li></li></ul>                                                     |
| Refrigerator/Freezer         | 500 – 1,500                                | <ul> <li>Drink vendor</li> <li>Restaurant/café</li> <li>Grocery shop</li> <li>Health clinic</li> </ul>           |
| Power Tools                  | 500 – 2,000                                | <ul><li>Construction</li><li>Furniture-making</li></ul>                                                          |
| Air Compressor (2 HP)        | 2,000 – 2,500<br>(10 Amp Three-Phase)      | <ul><li>Tire/auto repair</li><li>Construction</li><li>Small manufacturing</li></ul>                              |
| Water Pump                   | 2,000 – 5,000<br>(10 – 15 Amp Three-Phase) | <ul> <li>Reduce water-gathering time</li> <li>Crop irrigation</li> <li>Livestock</li> </ul>                      |

# How Does the User Mix Affect Economic Viability?



### How Does Reducing Cost of Electricity Lead to Reduced Price?



#### Pressure on Prices

#### Pulling Prices Down

- Contractual terms
- Government regulation
- Community pressure
- Verified baseline costs and tariff

#### **Pushing Prices Up**

- Increased availability of power (better service)
- IP seeking return on investment
- Increase in diesel cost
- Unverified baseline costs and tariff

#### To Meter or Not to Meter?

#### Meter

- Allows service to heterogeneous customers
- Pay for actual use (direct transparent price signal)
- Allows greater growth in level and type of load
- Encourages conservation
- May reduce community disputes
- Added complication of meter reading and billing

#### No Meter

- Easier installation
- Cheaper (Meter Cost = \$50-\$500)
- Simplified billing
- May be more community appropriate
- Only suitable for homogenous customers with fixed usage

### Components of RTL Process



### Real Time Learning Group

- Representatives from key stakeholders in ESRES
- Focal point at DFID, ESRES
   Secretariat, and MoEM
- Regular engagement with RTL team
- Formal meeting as part of JSC
- Communication of "lessons learning" through RTL quarterly report, case studies, workshops, and other deliverables
- Ongoing informal collaboration to ensure successful implementation of ESRES



# Join the ESRES Real Time Learning Group!



Randall Nottingham
ESRES RTL Team Leader
randall@somalilandenergy.com
www.esres-somaliland.org